Anomaly Detection in Multi-Seasonal Time Series Data
نویسندگان
چکیده
Most of today’s time series data contain anomalies and multiple seasonalities, accurate anomaly detection in these is critical to almost any type business. However, most mainstream forecasting models used for can only incorporate one or no seasonal component into their forecasts cannot capture every known pattern data. In this paper, we propose a new multi-seasonal model that extends the popular Seasonal Autoregressive Integrated Moving Average (SARIMA) model. Our model, named multi-SARIMA, utilizes dataset’s pre-determined trends increase accuracy even more than original SARIMA experimental results demonstrate higher multi-SARIMA when seasonalities are present with component, although processing time.
منابع مشابه
Anomaly Detection for Univariate Time-Series Data
Some of the biggest challenges in anomaly based network intrusion detection systems have to do with being able to handle anomaly detection at huge scale, in real time. The incoming data stream is homogeneous, containing different anomalous patterns along with a large amount of normal data. We pose the problem as that of detecting the anomaly in the data stream in realtime. We define an approach...
متن کاملTime Series Data Cleaning: From Anomaly Detection to Anomaly Repairing
Errors are prevalent in time series data, such as GPS trajectories or sensor readings. Existing methods focus more on anomaly detection but not on repairing the detected anomalies. By simply filtering out the dirty data via anomaly detection, applications could still be unreliable over the incomplete time series. Instead of simply discarding anomalies, we propose to (iteratively) repair them in...
متن کاملAnomaly Detection Using Unsupervised Profiling Method in Time Series Data
The anomaly detection problem has important applications in the field of fraud detection, network robustness analysis and intrusion detection. This paper is concerned with the problem of detecting anomalies in time series data using Peer Group Analysis (PGA), which is an unsupervised technique. The objective of PGA is to characterize the expected pattern of behavior around the target sequence i...
متن کاملOptimization of Time-series Data Partitioning for Anomaly Detection
The concepts of symbolic dynamics and data set partitioning have been used for feature extraction and anomaly detection in time series data. Although modeling of state machines from symbol sequences has been widely reported, similar efforts have not been expended to investigate partitioning of time series data to optimally generate symbol sequences for anomaly detection. This paper addresses th...
متن کاملAssumption-Free Anomaly Detection in Time Series
Recent advancements in sensor technology have made it possible to collect enormous amounts of data in real time. However, because of the sheer volume of data most of it will never be inspected by an algorithm, much less a human being. One way to mitigate this problem is to perform some type of anomaly (novelty /interestingness/surprisingness) detection and flag unusual patterns for further insp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2023
ISSN: ['2169-3536']
DOI: https://doi.org/10.1109/access.2023.3317791